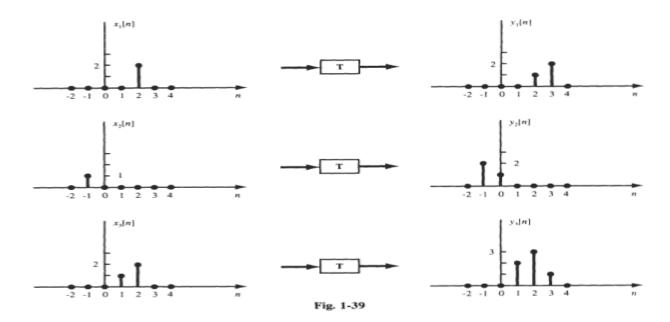

Sheet (2)

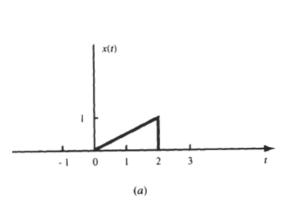
1.34. Consider the system shown in Fig. 1-35. Determine whether it is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable.

1.35. A system has the input-output relation given by

$$y = \mathbf{T}\{x\} = x^2$$


Show that this system is nonlinear.

1.36. The discrete-time system shown in Fig. 1-36 is known as the *unit delay* element. Determine whether the system is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable.


Fig. 1-36 Unit delay element

1.41. The system represented by **T** in Fig. 1-39 is known to be time-invariant. When the inputs to the system are $x_1[n]$, $x_2[n]$, and $x_3[n]$, the outputs of the system are $y_1[n]$, $y_2[n]$, and $y_3[n]$ as shown. Determine whether the system is linear.

Sheet (2)

1.46. Express the signals shown in Fig. 1-41 in terms of unit step functions.

3 x(t) 3 2 1 1 2 3 4 t

Fig. 1-41

1.58. Consider a discrete-time system with the input-output relation

$$y[n] = \mathbf{T}\{x[n]\} = x^2[n]$$

Determine whether this system is (a) linear, (b) time-invariant.